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N-dimensional nonlinear Fokker-Planck equation with time-dependent coefficients
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An N-dimensional nonlinear Fokker-Planck equation is investigated here by considering the time depen-
dence of the coefficients, where drift-controlled and source terms are present. We exhibit the exact solution
based on the generalized Gaussian function related to the Tsallis statistics. Furthermore, we show that a rich
class of diffusive processes, including normal and anomalous ones, can be obtained by changing the time
dependence of the coefficients.
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Anomalous diffusion processes appear in a large clas
systems in several contexts. Some illustrative examples
diffusion in plasmas@1#, relative diffusion in turbulent media
@2#, cetyltrimethylammonium bromide~CTAB! micelles dis-
solved in salted water@3#, surface growth and transport o
fluid in porous media@4#, two-dimensional rotating flow@5#,
subrecoil laser cooling@6#, diffusion on fractals@7#, anoma-
lous diffusion at liquid surfaces@8#, diffusion in linear shear
flows @9#, enhanced diffusion in active intracellular transpo
@10#, particle diffusion in a quasi-two-dimensional bacter
bath @11#, and spatiotemporal scaling of solar surface flo
@12#, among the others.

The existence of the anomalous diffusion and its ubiqu
has motivated, in particular, the analytical study by cons
ering nonlinear @13–19# and fractional @20,21# Fokker-
Planck equations, spatial dependence of the diffusion co
cient @17,19,22,23#, and temporal dependence of the dr
term @18,24#.

In this paper, we consider anN-dimensional nonlinear
Fokker-Planck equation incorporating the time depende
in every coefficient, where drift-controlled~external force!
and source terms are present. In our exact solution, a
class of anomalous behaviors can arise by choosing ap
priate time dependence of the coefficients. These results
dicate that the possible anomalies in diffusive processes
appear as a consequence of different causes. This paper
tains, essentially, the main results obtained in Re
@13,14,18,24# as special cases.

In order to investigate, in an exact way, a large class
anomalous diffusions, let us consider theN-dimensional non-
linear Fokker-Planck equation

]

]t
r̂~r ,t !5D~ t !“2@ r̂~r ,t !#n2“•@F~r ,t !r̂~r ,t !#

2a~ t !r̂~r ,t !, ~1!

where we incorporate the time dependence in the exte
force,
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F~r ,t !5k1~ t !1k2~ t !r , ~2!

in the diffusion coefficientD(t) and in the source terma(t).
In particular, we consider the case where the space cons
term in F(r ,t) can be taken with different coefficients. Th
situation is useful, for example, to study diffusion in th
gravitational field@k15(0,0,k1z)#. The harmonic potential is
considered isotropic.

The source term in Eq.~1! can be removed by an appro
priate change in the solution

r̂~r ,t !5expF2E
0

t

a~ t8!dt8Gr~r ,t !. ~3!

This way,r(r ,t) obeys the equation

]

]t
r~r ,t !5D~ t !“2@r~r ,t !#n2“•@F~r ,t !r~r ,t !#, ~4!

with D(t)5D(t)exp@(12n)*0
t a(t8)dt8#. Thus, Eq.~4! has the

same structure of Eq.~1! without the source term, but with
an additional time dependence of the diffusion coefficie
Observe that this additional time dependence ofD(t) is in-
duced by the nonlinear termrn, disappearing whenn51.

In order to obtain an exact solution for Eq.~4! with the
external force term given by Eq.~2!, we are going to employ
the ansatz

r~r ,t !5
1

Z~ t !
$12~12q!b~ t !@r2r0~ t !#2%1/(12q) ~5!

if 1 2(12q)b(t)(r2r0)2>0 and r(r ,t)50 if 12(1
2q)b(t)(r2r0)2,0 ~cutoff condition!. We would like to
remark that Eq.~5! can be justified via dimensional analys
and related to the renormalization group theory@25#. Further-
more, this ansatz can also be connected with Tsallis statis
@26,27#. In addition, Eq.~5! reduces to the Gaussian whe
q→1. In fact, by defining the function expq(2x2)[@12(1
2q)x2#1/(12q) if 1 2(12q)x2>0, and expq(2x2)[0 if 1
2(12q)x2,0 as aq Gaussian, we obtain the usual Gaus
ian function by taking the limitq→1. Equation~5! is a so-
©2002 The American Physical Society01-1
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lution of Eq. ~4! whenn522q and the time dependence o
b(t), Z(t), andr0(t)5( i 51

N x0i(t)ei are ruled by the follow-
ing system of equations:

1

Z

dZ

dt
52~22q!NDbZ211q2Nk2 , ~6!

1

b

db

dt
524~22q!DZ211qb12k2 , ~7!

and

dx0i

dt
5k1i2k2x0i . ~8!

Note that Eqs.~6! and ~7! are nonlinear, Eq.~8! is indepen-
dent of b(t) and Z(t), and k1i(t) does not appear in th
nonlinear coupled differential equations forb(t) and Z(t).
Furthermore, the spatially independent term in the exte
force only affects the time dependence ofx0i . So, Eq.~8!
leads to

x0i~ t !5e2m(t)Fx0i~0!1E
0

t

k1i~s!e2m(s)dsG , ~9!

where m(t)5*0
t k2(s)ds. For example, in a three

dimensional space with the presence of an isotropic tim
independent harmonic potential and the gravitational fie
i.e., k2(t)5k25const, k1x5k1y50, andk1z(t)5k15const,
we getx0(t)5x0(0)e2k2t, y0(t)5y0(0)e2k2t, and

z0~ t !5Fz0~0!1
k1

k2
~ek2t21!Ge2k2t. ~10!

The solution for the nonlinear coupled equations forZ(t)
andb(t), @Eqs.~6! and ~7!# is given by

Z~ t !5Z0F12
c1

N
f ~ t !GN/c1

~11!

and

b~ t !5b0F12
c1

N
f ~ t !G22/c1

, ~12!

with c1521N(12q), b05b(t50), Z05Z(t50), and

f ~ t !5e2c1m(t)3E
0

t

@Nk2~s!

22N~22q!b0Z0
q21D~s!#ec1m(s)ds. ~13!

It is usual to identify a normal diffusion process by
linear growth in time of the variances2[^(r2r0)2&. Other
time dependences ons2 are commonly related as anomalo
diffusion, for instance, superdiffusive, subdiffusive, exp
nentially diffusive, and localized. In our study, we obtain
large class of diffusive processes that include these
amples. In addition,s2 can have different behaviors fo
small and large times, enabling the description of a r
05210
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structure of diffusion regime. Here we are going to analy
as an illustration, a set of representative kinds of th
anomalous behaviors in the asymptotic regime taking so
specific dependence of the coefficients into account. In
direction, from Eqs. ~3! and ~5!, we investigate the
asymptotic temporal behavior of the variance

s25

E ~r2r0!2r̂~r ,t !dNr

E r̂~r ,t !dNr
5C~q,N!b21, ~14!

where C(q,N) is a constant depending only onq and N.
Note that the convergence of the integral forq.1 in s2

imposes a restriction over the parameters: 21N(12q)
.2(q21). This implies thatc1 is a positive constant for al
q values.

First, let us consider the case without the source te
with the diffusion coefficient constant, and with the tim
dependence of the harmonic external force given byk2(t)
5kt2b. From Eq.~13!, we obtain

f ~ t !;$12exp@2c1kt12b/~12b!#%

1$c2exp@2c1kt12b/~12b!#2c3tb% ~15!

for large t and b,1, wherec2 and c3 are constants tha
depend onN,k,q, and b. Again, for larget and b51, we
have f (t);t22k2c2t22k(t112k21)/(112k), and finally,
for b.1, we get f (t);t. By using the fact that the mea
square displacement is given bys2; f (t)2/c1, several
asymptotic behaviors can be obtained. We summarize
Table I the possible behaviors related to the abo
asymptotic results. When we restrict our analysis to the o
dimensional linear case (n51), this drift-controlled anoma-

TABLE I. Large time behavior ofs2; f (t)2/c1 for a(t)50,
D(t)5D(t)5D0, andk2(t)5kt2b, wherec1521N(12q).0.

b k s2(t) Description

b k50 t2/c1 c1 Diffusive a

b50 k.0 (12e2c1kt)2/c1 Ornstein-Uhlenbeck
b50 k,0 e2ukut Exponentially diffusive
0,b,1 k.0 t2b/c1 c1 Diffusive b

0,b,1 k,0 e2ukut12b Less than

exponentially diffusive
b,0 k.0 1/t2ubu/c1 Localized
b,0 k,0 e2ukut12b More than

exponentially diffusive
b51 k.21/2 t2/c1 c1 Diffusive a

b51 k521/2 (t lnt)2/c1 Log divergent
b51 k,21/2 t2uku Superdiffusive
b.1 k t2/c1 c1 Diffusive a

aThe process is superdiffusive forc1,2, normal for c152, and
subdiffusive forc1.2.
bThe process is superdiffusive forc1,2b, normal forc152b, and
subdiffusive forc1.2b.
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lous diffusion contains the results given in Ref.@24# as a
particular case. Consider now the nonlinear diffusion eq
tion with neither source nor linear external force, but w
the time dependence of the diffusion coefficient given
D(t)5D(t)5D0td. In this case, for larget, Eq. ~13! leads to

f ~ t !;td11. ~16!

Since s2; f (t)2/[21N(12q)] , there is a competition betwee
the parametersq andd to define the diffusion regimes. Tabl
II contains a summary of these regimes. Another poss
situation is to take the nonlinear diffusion equation with
time-dependent source term,a(t)5a0ta, with time-
independent diffusion constant,D(t)5D0, and without lin-
ear external force,k2(t)50. For n51 (q51) the source
term does not affect the diffusion regime. On the other ha
for nÞ1 (qÞ1) and larget, Eq. ~13! gives

f ~ t !;taexpF ~q21!a0t11a

11a G , ~17!

when a.21. For a521, we havef (t);t (q21)a011, and
for a,21, Eq.~13! reduces tof (t);t. Table III gives us a
summary of the above behaviors. To conclude our obse
tions about the anomalous diffusion induced by the tim
dependent coefficients, we stress that the investigation
more complex time dependence of the coefficients can
reduced to the analysis of Eq.~13!.

Summing up, we have investigated anN-dimensional
nonlinear Fokker-Planck equation by incorporating the ti
dependence of every coefficient, including those of the
ternal force and the source term. An exact solution is
tained in the case of external force with isotropic spa
linear term and a possible anisotropic spatial constant te
This anisotropic constant term is useful, for instance, to a

TABLE II. Large time behavior ofs2; f (t)2/c1 for a(t)50,
D(t)5D(t)5D0td, andk2(t)50, wherec1521N(12q).0.

d q s2(t) Description

d50 q51 t Normal
d50 q,1 t2/[21N(12q)] Subdiffusive
d50 q.1 t2/[21N(12q)] Superdiffusive
d,0 q51 t12udu Subdiffusive
d.0 q51 t11d Superdiffusive
d.N(12q)/2 q t2(11d)/[21N(12q)] Superdiffusive
d,N(12q)/2 q t2(11d)/[21N(12q)] Subdiffusive
ys

et
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lyze diffusion when the gravitational field is relevant. W
have showed that a rich class of anomalous behaviors a
by choosing appropriate time dependence of the coefficie
These results indicate that the anomaly in diffusive proces
may appear as a consequence of different causes. In par
lar, the combination of nonlinearity and time dependence
the coefficients can lead to the normal diffusion~time linear
growth of the mean square displacement!. This fact implies
that the normal diffusion, in general, can not be associa
with the Gaussian shape of the distributionr(r ,t), i.e., the
linear time increase of variance does not necessarily m
that we are in the presence of ordinary diffusion. Finally,
hope that the results obtained here may be useful to clari
possible origin of a large class of different anomalous dif
sive processes in theoretical and experimental contexts.

We thank CAPES, CNPq, and PRONEX~Brazilian agen-
cies! for partial financial support.

TABLE III. Large time behavior of s2; f (t)2/c1 for a(t)
5a0ta, D(t)5D0, andk2(t)50, wherec1521N(12q).0.

a0 a s2(t) Description

(q21)a0,0 a50 Se(q21)a0t21

~q21!a0
D2/c1 Stationary

(q21)a0.0 a50 Se(q21)a0t21

~q21!a0
D2/c1 Exponentially

diffusive
a0 a521 t2[(q21)a021]/c1 c1 Diffusive

Less than
(q21)a0.0 21,a,0

exp
2@(q21)a0#t

11a]
c1(11a)

exponentially

diffusive
(q21)a0,0 21,a,0 t2uau/c1 c1 Diffusive

More than
(q21)a0.0 a.0

exp
2@(q21)a0#t

11a]
c1(11a)

exponentially

diffusive
(q21)a0,0 a.0 t22a/c1 Localized
a0 a,21 t2/c1 c1 Diffusive

aThe process is superdiffusive forc1,2@(q21)a021#, normal for
c152@(q21)a021#, and subdiffusive forc1.2@(q21)a021#.
bThe process is superdiffusive forc1,2uau, normal for c152uau,
and subdiffusive forc1.2uau.
cThe process is superdiffusive forc1,2, normal for c152, and
subdiffusive forc1.2.
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